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ABSTRACT 14	
  

The National Aeronautics and Space Administration Micropulse Lidar Network Version 3 cloud 15	
  

detection algorithm is described and its differences relative to the previous version highlighted.  16	
  

Clouds are identified from normalized Level 1 signal profiles using two complementary 17	
  

methods.  The first considers signal derivatives vertically for resolving low-level clouds.  The 18	
  

second, which resolves high-level clouds like cirrus, is based on signal uncertainties given the 19	
  

relatively low signal-to-noise ratio exhibited in the upper troposphere by eye-safe network 20	
  

instruments, especially during daytime.  Furthermore, a multi-temporal averaging scheme is used 21	
  

to improve cloud detection under conditions of weak signal-to-noise.  Diurnal and seasonal 22	
  

cycles of cloud occurrence frequency based on one year of measurements at the Goddard Space 23	
  

Flight Center (Greenbelt, MD) site are compared for the new and previous versions.  The largest 24	
  

differences, and perceived improvement, in detection occurs for high clouds (above 5-km, mean 25	
  

sea level) which increase in occurrence by nearly 6%.  There is also an increase in the detection 26	
  

of multi-layered cloud profiles from 9% to 20%.  Macrophysical properties and estimates of 27	
  

cloud optical depth are presented for a transparent cirrus dataset.  However, the limit to which 28	
  

molecular signal can be reliably retrieved above cirrus clouds occurs between cloud optical 29	
  

depths of 0.5 and 0.8.     30	
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1. Introduction 31	
  

 Clouds play a critical role in the Earth’s climate system because they are inextricably linked 32	
  

to the hydrological cycle and radiation budget (Liou 1986; Ramanthan et al. 1989).  Information 33	
  

about cloud height, thickness, occurrence, and amount are critical inputs for a host of numerical 34	
  

applications involving climate research.  Therefore, it is important to have highly accurate and 35	
  

quantitative data records of cloud properties that span several years and geographic regions.  36	
  

Verification of even the most basic modeling processes demands compulsory observations of 37	
  

global cloud occurrence, if there is to be any confidence in their fidelity.   38	
  

 Various methods of determining cloud climatologies exist, each with their own advantages 39	
  

and limitations.  Visual observations from the surface (Warren et al. 1985; Hahn et al. 1996; 40	
  

Hahn and Warren 1999) provide cloud fraction and morphological cloud types.  However, these 41	
  

can be biased by the quality of technician training, underestimation of high clouds, sparse global 42	
  

coverage, and nighttime bias.  Passive radiometric sensors aboard satellites, which are the core 43	
  

input of the International Satellite Cloud Climatology Project (ISCCP; Rossow and Schiffer 44	
  

1991, 1999), offer a true global representation and have the best (unobstructed) potential view of 45	
  

high clouds.  However, these can undersample low-level maritime clouds and underrepresent 46	
  

optically-thin cirrus clouds (Holz et al. 2008).   47	
  

 Active sensors, like lidar and radar (Platt et al. 1994; Moran et al. 1998; Wang and Sassen 48	
  

2001), are the primary tools for observing and profiling cloud vertical structure to high accuracy.  49	
  

When flown aboard satellites, like Cloud Aerosol Lidar and Infrared Pathfinder Satellite 50	
  

Observations (CALIPSO; Winker et al. 2007) and CloudSat (Stephens et al. 2002), active 51	
  

sensors also provide global coverage.  Even still, the relatively narrow profiling curtain of 52	
  

current active sensors limits observation densities.  In the case of CALIPSO and CloudSat, these 53	
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missions provide at most two profiles per 24-hour period over most regions, which limits studies 54	
  

of the diurnal impact of clouds on the Earth system.  Fundamentally, an array of remote sensing 55	
  

methods is needed in order to investigate the complexity of clouds (Schiffer and Rossow 1983).    56	
  

2. Micropulse Lidar Network 57	
  

 The National Aeronautics and Space Administration (NASA) Micropulse Lidar Network 58	
  

(MPLNET; Welton et al. 2001, http://mplnet.gsfc.nasa.gov) is a federated network of micropulse 59	
  

lidar (MPL) systems deployed worldwide in support of basic science and the NASA Earth 60	
  

Observing System program (Wielicki et al. 1995).  A benefit of MPLNET is the use of a 61	
  

standardized instrument employing a common data processing algorithm with thorough 62	
  

uncertainty characterization, which allows for straightforward comparisons between sites.  With 63	
  

sites in polar, mid-latitude, and tropical regions and continuous day/night, high temporal 64	
  

resolution datasets going back as far as 1999, MPLNET datasets represent a valuable archive for 65	
  

improving our understanding of global cloud macrophysical properties on diurnal, season, and 66	
  

decadal scales.  67	
  

 There have been two versions of MPLNET data processing algorithms to date. The first, 68	
  

referred to as Version 1, was released in 2000.  Beginning in 2006, the project transitioned to 69	
  

Version 2 (hereafter V2) data products which are currently available.  Version 3 (hereafter V3) 70	
  

data processing algorithms are currently in development.            71	
  

 The V2 Level 1 MPLNET data products contain the system diagnostics (e.g. solar 72	
  

background counts, instrument temperature and energy, etc.), normalized relative backscatter 73	
  

(NRB), and NRB uncertainty.  The NRB is reported at one-minute temporal resolution up to 30-74	
  

km, typically at 75-m vertical resolution (some sites operate at 30-m).  The NRB is defined as:  75	
  

 (1) NRB(z) =Cβ(z)T 2 (z)



	
   4	
  

where C is the instrument calibration constant, β is the backscatter coefficient from both 76	
  

molecules and particles, T2 is the corresponding total atmospheric two-way transmittance, and z 77	
  

is the altitude.  NRB and the calculation of its uncertainty are discussed by Campbell et al. 78	
  

(2002) and Welton and Campbell (2002).  Level 1 data are available in real time with no quality 79	
  

assurance.  Cloud base and top heights are identified in the V2 Level 1.5 (real time, no quality 80	
  

assurance) and Level 2 (not real time, quality assured) MPLNET data products.  The V2 Level 81	
  

1.5 data products use temperature and pressure profiles from US Standard Atmospheres (COESA 82	
  

1976) to determine molecular calculations, while National Centers for Environmental Prediction 83	
  

(NCEP)/National Center for Atmospheric Research (NCAR) Reanalysis (Kalnay et al. 1996) is 84	
  

used for V2 Level 2 data.        85	
  

 MPLNET V2 data products have been used to distinguish cloud presence in a number of 86	
  

scientific investigations to date.  For example, Campbell and Sassen (2008) use data from the 87	
  

South Pole to document polar stratospheric cloud occurrence over multiple seasons.  Shupe et al. 88	
  

(2011) consider MPLNET measurements at Ny-Ålesund, Norway as context for evaluating Artic 89	
  

cloud properties.  Others have investigated cirrus contamination of Aerosol Robotic Network 90	
  

(AERONET) aerosol optical depth in Southeast Asia (Chew et al. 2011; Huang et al. 2011) and 91	
  

globally (Huang et al. 2012).  Lolli et al. (2013) use collocated 355/527-nm MPLNET 92	
  

observations to estimate the drizzle droplet size from stratocumulus and stratus clouds.    93	
  

 A new V3 cloud detection algorithm has been developed to improve the quality of MPLNET 94	
  

cloud products.  The new algorithm uses a combination of signal-processing techniques and a 95	
  

multi-resolution temporal averaging scheme to resolve cloud boundaries.  Meteorological 96	
  

profiles provided by the Goddard Earth Observing System – Version 5 (GEOS-5) Atmospheric 97	
  

General Circulation Model (AGCM; Rienecker et al. 2008; Molod et al. 2012) are used for 98	
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molecular calculations.  Specifically, the Forward Processing for Instrument Teams (FP-IT) 99	
  

GEOS-5 Version 5.9.1 data are utilized (http://gmao.gsfc.nasa.gov/products).   The model data 100	
  

are available at 3-hour intervals over 72 pressure levels at 0.625° longitude and 0.5° latitude 101	
  

resolution.  Modeled profiles for this study were subsampled from the GEOS-5 grid containing 102	
  

the Goddard Space Flight Center (GSFC) site location, and interpolated to the MPLNET range 103	
  

and time resolutions (75 m, 1 minute).  104	
  

 The goals of this paper are to describe the new algorithm and demonstrate performance.  We 105	
  

outline changes relative to V2 cloud detection and describe how the new algorithm is applied to a 106	
  

variety of cloudy scenes.  We apply one year of data collected at the GSFC MPLNET site 107	
  

(38.99° N, 76.84° W, 0.05 km above mean sea level; MSL) to compare V2 and V3 results and 108	
  

highlight the impact of our upgraded techniques through differences in macrophysical cloud 109	
  

properties observed from this location.      110	
  

3. Cloud detection algorithm description 111	
  

 Examples of daytime and nighttime NRB profiles at GSFC are shown in Fig. 1.  Both 112	
  

profiles show high-level clouds with base heights near 10 km and top heights near 13 km, MSL.  113	
  

The daytime NRB profile exhibits relatively lower signal-to-noise compared with the nighttime 114	
  

case due to higher solar background, which makes detection of elevated layers an increasingly 115	
  

difficult task.                  116	
  

a. Version 2 cloud detection 117	
  

 Layers are identified in the V2 cloud detection algorithm by a combination of two retrieval 118	
  

methods applied to the Level 1 data products.  The first method requires that the first derivative 119	
  

of the lidar signal exceed a minimum threshold in order to detect a layer.  The assumption of 120	
  

strong signal gradients makes this well suited for detecting liquid-phase clouds, which are 121	
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frequently at lower levels in the NRB profile and correspond with higher signal-to-noise. This is 122	
  

hereafter referred to as the gradient-based cloud detection method (GCDM).  The second method 123	
  

is designed for use in cases of low signal-to-noise ratio (SNR) and relies on uncertainties in the 124	
  

lidar signal.  This method uses two tunable thresholds and one objective threshold to identify 125	
  

cloud boundaries, and is hereafter referred to as the uncertainty-based cloud detection method 126	
  

(UCDM).   127	
  

 Given the relatively low SNR exhibited by the MPL in the upper troposphere at base one-128	
  

minute resolution (primarily during daytime), no single procedure is used to detect all cloud 129	
  

types at all times.  Thus the merger of these two methods offers the possibility to retrieve the 130	
  

entire cloud vertical structure to the limit of signal attenuation.  We describe the basis for each 131	
  

method, as follows.   132	
  

 1) GRADIENT-BASED CLOUD DETECTION 133	
  

 Autonomous methods of cloud detection using gradients in the lidar signal, such as the 134	
  

differential zero-crossing method described by Pal et al. (1992), are well established.  The first 135	
  

step in the GCDM is to normalize the NRB using the attenuated molecular backscatter 136	
  

coefficient,  137	
  

𝛽!! 𝑧 = 𝛽!𝑇!! 𝑧 , (2) 

which produces an attenuated scattering ratio, βrʹ′, multiplied by the instrument calibration 138	
  

constant as 139	
  

C !βr (z) =
Cβ(z)T 2 (z)

!βm (z)
=
C[βm (z)+βp(z)]Tm

2 (z)Tp
2 (z)

βm (z)Tm
2 (z)

=C 1+
βp(z)
βm (z)

"

#
$

%

&
'Tp

2 (z) . (3) 

Here the subscripts m and p denote contributions from molecules and particles, respectively.  140	
  

 The first derivative of Cβrʹ′ is used to identify clouds in the GCDM.  Due to increasing 141	
  

uncertainty in the profile with height, the GCDM retrieval is only performed up to a “noise 142	
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altitude”, defined as the altitude at which the uncertainty, δNRB, exceeds half of the NRB (or 143	
  

conversely, analogous to an SNR of 2).  Cloud presence corresponds with an increase in total 144	
  

backscatter, which results in a large positive gradient in Cβrʹ′ with height as seen in Fig. 2.  The 145	
  

threshold used to identify the cloud base is defined as 146	
  

	
   amax = K ⋅C "βr , (4) 

where 𝐶𝛽!′ is the mean value of Cβrʹ′ up to the noise altitude and K is an empirical parameter 147	
  

(unitless), set to 10 for this study.  The value of K is chosen carefully so that it is high enough to 148	
  

reject insignificant peaks in the first derivative of Cβrʹ′ (i.e. aerosol stratification in the surface-149	
  

attached layer or signal noise) while remaining sensitive enough to identify weakly-scattering 150	
  

clouds.   151	
  

 The cloud base is identified at the altitude bin immediately preceding that where the first 152	
  

derivative of Cβrʹ′ exceeds amax.  Identification of cloud top is more ambiguous and is performed 153	
  

using one of two processes.  A negative gradient in Cβrʹ′ occurs near the top of a cloud, 154	
  

corresponding with the decrease in total backscatter and the impact of signal attenuation through 155	
  

the cloud.  The first method used to identify the cloud top relies on a threshold defined as  156	
  

amin =C !βr − amax . (5) 

The algorithm begins by looking for altitude bins above the cloud base where the first derivative 157	
  

of Cβrʹ′ falls below amin.  Then the altitude bin where the first derivative initially returns above 158	
  

amin is identified as the cloud top.   However, if this condition is not met, the cloud top is chosen 159	
  

as the altitude bin where the value of Cβrʹ′ falls below the value at the cloud base or the noise 160	
  

altitude, whichever occurs first.  If the lidar signal becomes significantly attenuated within the 161	
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cloud, the designation as an apparent cloud top is more appropriate in accordance with standards 162	
  

agreed upon by the Experimental Cloud Lidar Pilot Study (ECLIPS; Platt et al. 1994).   163	
  

 Two cloud layers are apparent in Fig. 2.  Both cloud bases are identified at the altitudes 164	
  

immediately below the amax exceedances (dashed line, positive derivative).  The first (lowest) 165	
  

cloud top can be found using the amin threshold (dashed line, negative derivative).  But the 166	
  

derivative never falls below amin for the second cloud layer.  Therefore, the alternative process is 167	
  

used to identify the apparent cloud top.  Only true (not apparent) cloud tops are reported in V2 168	
  

MPLNET cloud products. 169	
  

 2) UNCERTAINTY-BASED CLOUD DETECTION 170	
  

 An alternative to algorithms that utilize gradients in the lidar return to identify clouds are 171	
  

approaches that compare cloudy lidar returns to clear sky returns (Clothiaux et al. 2007).   172	
  

Similarly, the UCDM uses a theoretical molecular return and the signal uncertainty to detect 173	
  

elevated clouds, and is fully described by Campbell et al. (2008, hereafter C08).  However, a few 174	
  

comments regarding its implementation are warranted.  The first step in the UCDM is to 175	
  

approximate the value of the instrument calibration constant.  Level 1 NRB is divided by the 176	
  

attenuated molecular backscatter coefficient, resulting in an attenuated scattering ratio multiplied 177	
  

by the instrument calibration constant, as given in Eq. (3).  Next, a clear-sky search is performed 178	
  

to locate a normalization region where we can approximate that βp approaches zero over a 179	
  

certain number of range bins, N.  The nature of the UCDM only allows for cloud detection at 180	
  

altitudes above the normalization region.  The calibration constant is approximated by averaging 181	
  

Eq. (3) over the N bins.  C08 stress that this final normalization value, Cf
*, must be distinguished 182	
  

from C due to unknown transmission losses below the normalization region.     183	
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   As an example, a representation of the UCDM is shown in Fig. 3.  Beginning at 1-km 184	
  

above ground level (AGL) and working upward, the uncertainty in Cβrʹ′ is evaluated at each 185	
  

altitude bin according to the criteria set forth by C08 until a “clear-air” slot is found.  In this case, 186	
  

the “clear-air” region used to determine the normalization value begins at r1 = 6.46 km and ends 187	
  

at rN = 8.71 km.  Averaging Cβrʹ′ between r1 and rN gives a value of Cf
* = 92.33 MHz km3 sr 188	
  

µJ−1.        189	
  

 Once Cf
* has been calculated, a so-called pseudo-attenuated backscatter and its uncertainty 190	
  

are solved as  191	
  

PAB(z) = NRB(z)
Cf
*

,
 (6) 

and 192	
  

δPAB(z) = PAB(z) δNRB(z)
NRB(z)

!

"
#

$

%
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

. (7) 

Eq. (7) is then modified by substituting the attenuated molecular backscatter for the PAB to 193	
  

develop an objective threshold,  194	
  

α(z) = βm (z)Tm
2 (z)+βm (z)Tm

2 (z) δNRB(z)
βm (z)Tm

2 (z)Cf
*

!

"
#
#

$

%
&
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

, (8) 

which is used to differentiate what are first presumed cloud returns from molecular return.  195	
  

Range bins above rN that meet the condition  196	
  

PAB(z)−δPAB(z)>α(z) 	
   (9) 

are then evaluated to determine whether they represent particulate layer base heights.  Range 197	
  

bins that do not meet the condition from Eq. (9) are used to establish “clear-air” slots and are 198	
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disqualified from the particulate base height search.  In other words, a minimum detectable 199	
  

scattering ratio for particulates is defined as  200	
  

βr,min (z) =
α(z)+δPAB(z)

!βm (z)
. (10) 

 Running averages of PAB and δPAB are used in conjunction with two additional tunable 201	
  

thresholds, φ and κ (both analogous to a SNR), to determine the actual layer base and top 202	
  

heights.  The threshold φ sets the minimum average value of PAB/δPAB for bins that exceed Eq. 203	
  

(10) in order to identify the layer base.  At this point, and as described above, the UCDM 204	
  

assumes that any such layers detected are hydrometeor clouds, thereby leaving the potential for 205	
  

false detection of elevated aerosol layers.  In the absence of supplementary information, 206	
  

however, such as color ratio (Liu et al. 2005) or depolarization (Cho et al. 2008, Omar et al. 207	
  

2009) and combined with the goal of resolving as much thin cirrus as possible in the low SNR 208	
  

portions of the NRB profile, this is unavoidable.  Mitigation strategies are described further 209	
  

below.        210	
  

 The threshold κ sets the minimum average value of PAB/δPAB for bins that do not exceed 211	
  

Eq. (10) in order to identify clear air layers and consequently particulate layer tops.  In Fig. 3, the 212	
  

red line indicates the threshold used to distinguish particulate from molecular returns.  Bins that 213	
  

exceed this objective threshold are evaluated using the tunable threshold φ, while bins with 214	
  

values lower than this threshold are evaluated using the tunable threshold κ.  The sensitivity of 215	
  

V2 cloud detection to the tunable thresholds is evaluated in C08 and the values chosen for φ and 216	
  

κ will depend on the site location and instrument performance parameters.   217	
  

 3) V2 CLOUD RETRIEVALS 218	
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 An example of V2 cloud retrievals is shown in the top panel of Fig. 4. Results from the 219	
  

GCDM and UCDM are integrated based on the noise altitude (described in Section 3.a.1).  220	
  

Clouds occurring below this height are reported from the GCDM.  All clouds above the noise 221	
  

altitude are identified using the UCDM.  At night, the noise altitude reaches above typical cirrus 222	
  

cloud heights at GSFC.  Therefore, the GCDM is almost exclusively responsible for cloud 223	
  

detection.  As a result, weakly-scattering cirrus can go undetected, since GCDM thresholds are 224	
  

tuned primarily with boundary layer phenomena in mind (i.e. suppression of aerosol 225	
  

identification).  This can be observed frequently between 0300 and 0600 UTC in Fig. 4, where 226	
  

cirrus presence is underreported and cloud base heights are overestimated.  227	
  

 In the daytime, the noise altitude shown in Fig. 4 falls between 8–9 km and the UCDM is 228	
  

responsible for all cloud detection above it.  In several instances, cloud bases (red markers) are 229	
  

shown while the corresponding cloud tops (orange markers) appear to be missing.  In these cases 230	
  

the lidar signal is assumed to be significantly attenuated, and therefore no cloud top is reported. 231	
  

b. Version 3 cloud detection  232	
  

 The V3 algorithm is based on V2 with a few meaningful changes to the UCDM. 233	
  

Consequently, the changes in V3 represent an update to C08 and how the GCDM and UCDM are 234	
  

merged.  A schematic of the V3 cloud detection algorithm at the one-minute base NRB temporal 235	
  

resolution is shown in Fig. 5. Low-altitude obstructions (e.g. fog or low stratus decks) reduce 236	
  

SNR and limit the accuracy of cloud retrievals. Therefore, each profile is screened for these 237	
  

“beam-blocked” conditions by a process described further below.  If no such obstructions are 238	
  

found, the first step in the UCDM is to calculate the normalization value.   239	
  

 1) NORMALIZATION REGION    240	
  

 As mentioned in C08, it is most practical to find a normalization region to calculate Cf
* 241	
  

nearest to the instrument in order to increase the depth of the profile analyzed for clouds.  In V2, 242	
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the clear-sky search is initiated at 1 km AGL.  However, in V3, an altitude of 5-km MSL is 243	
  

chosen to reduce the likelihood of normalizing within relatively homogenous aerosol layers in or 244	
  

near the boundary layer.  Furthermore, based on recent global cloud and aerosol studies (Holz et 245	
  

al. 2008; Sassen et al. 2008; Campbell et al. 2015), 5 km represents a reasonable height to begin 246	
  

the search for high clouds in tropical and mid-latitude locations.  A lower altitude may be needed 247	
  

for polar sites, however.  In the event that it is not possible to perform the normalization step at 248	
  

5-km, the UCDM attempts to normalize lower in the atmospheric profile iteratively, to as low as 249	
  

1 km AGL, as done in the V2 algorithm.        250	
  

 The normalization region also serves as the boundary between the GCDM and UCDM 251	
  

retrievals in the V3 cloud algorithm, allowing the better-suited method (GCDM for low clouds 252	
  

and UCDM for high clouds) to operate during both day and night. The V3 cloud retrievals in the 253	
  

bottom panel of Fig. 4 can be compared with the V2 retrieval in the same figure to see the 254	
  

relative apparent improvement.  We also note that there are conditions when either method 255	
  

(GCDM or UCDM) may be used to retrieve high-level or low-level clouds.  Therefore, the 256	
  

retrieval method for each cloud layer is provided as an output parameter.   257	
  

 2) OBJECTIVE THRESHOLD 258	
  

 The objective UCDM threshold, α, defined in Eq. (8) is now adjusted for attenuation within 259	
  

cloud layers in V3.  In order to attenuate the α threshold, we assume an initial unity transmission 260	
  

at the base of the first detected cloud layer.  Then the two-way transmittance is calculated at each 261	
  

altitude bin Z within the cloud layer as 262	
  

TC
2 (Z ) = TC

2 (Z −1)exp −2SCβC (Z )Δz[ ]

TC
2 (Z ) = TC

2 (Z −1)exp −2SC
#βr (Z )

TC
2 (Z −1)

−1
$

%
&

'

(
)βm (Z )Δz

*

+
,

-

.
/,
	
   (11) 
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where βC is the cloud backscatter coefficient, SC is the extinction-to-backscatter ratio (or lidar 263	
  

ratio) of the cloud, Δz is the vertical resolution of the instrument, and βrʹ′ is the attenuated 264	
  

scattering ratio given by  265	
  

!βr (z) =
NRB(z)
Cf
* !βm (z)

≈ 1+ βC (z)
βm (z)

#

$
%

&

'
(TC

2 (z) . (12) 

 Overestimating the single unknown term in these equations, the extinction-to-backscatter 266	
  

ratio, will lead to excessive attenuation of the objective threshold and eventual 267	
  

mischaracterization of clear sky as cloud.  Therefore, in this step, a very conservative choice for 268	
  

SC equal to the molecular extinction-to-backscatter ratio (8π/3) is used. 269	
  

 Once the transmittance has been determined, Eq. (8) is modified to recalculate the α 270	
  

threshold as 271	
  

α(z) = βm (z)Tm
2 (z)TC

2 (z)+βm (z)Tm
2 (z) δNRB(z)

βm (z)Tm
2 (z)Cf

*

!

"
#
#

$

%
&
&

2

+
δCf

*

Cf
*

'

(
))

*

+
,,

2

. (13) 

By attenuating the α threshold, we are able to better resolve cloud tops for optically-thick clouds.  272	
  

Furthermore, multilayer clouds, where the upper layer was missed entirely by the V2 algorithm, 273	
  

are now more effectively detected in some cases.     274	
  

 3) MULTI-TEMPORAL RESOLUTION 275	
  

 Cloud boundaries are only reported at one-minute temporal resolution in the V2 algorithm.  276	
  

However, instances of high solar background reduce UCDM performance.  So, as described by 277	
  

C08, multi-temporal resolution settings are used in V3.  In addition to the one-minute base 278	
  

temporal resolution, the UCDM is performed for intermediate (five-minute) and long (twenty-279	
  

minute) temporal averages using a sliding window centered on a corresponding one-minute 280	
  

profile.  281	
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 A flow chart describing the process is shown in Fig. 6.  Retrievals at the base temporal 282	
  

resolution are used to screen profiles at longer averages, thus limiting the effects of “beam-283	
  

blocked” profile contamination.  Within a window of N profiles, k profiles are removed from the 284	
  

average if an attenuating structure is detected below 5 km at the base temporal resolution.  If k > 285	
  

N/2, then the entire average profile is rejected.   286	
  

 A combined cloud scene is created using cloud boundaries retrieved from the three temporal 287	
  

resolutions.  First, the combined scene uses the cloud boundaries from the base temporal 288	
  

resolution.  Next, the intermediate and then long temporal resolutions are used to fill in the 289	
  

missing gaps as needed.  Cloud boundaries are always reported at the highest temporal resolution 290	
  

possible to reduce the effects of cloud smearing caused by averaging.  This is broadly consistent 291	
  

with the methodology used for NASA Cloud Aerosol Lidar with Orthogonal Polarization 292	
  

(CALIOP) Level 2 products and their gridding of multiple spatial resolutions from the selective 293	
  

iterated boundary locator (SIBYL) to their vertical feature mask (Vaughan et al. 2005).  A noted 294	
  

difference is that SIBYL also uses an intensity-clearing process to remove features detected at 295	
  

finer resolutions from the coarser spatial averages.  No such intensity clearing is performed with 296	
  

the V3 algorithm.      297	
  

 4) FALSE POSITIVES 298	
  

 As mentioned previously, use of the UCDM presumes first only cloud presence.  Additional 299	
  

constraints are thus used to reduce the number of instances when noise excursions, elevated 300	
  

aerosol layers or poor normalizations produce false cloud retrievals.  The first constraint 301	
  

establishes a minimum layer thickness of 150 m (i.e., two bins at 75-m resolution) in order to 302	
  

qualify a potential layer as a cloud.  Therefore, we require all bins within a distance greater or 303	
  

equal to the minimum layer thickness to exceed the minimum detectable scattering ratio in Eq. 304	
  

(10) before a cloud base is established.  Similarly, a minimum clear air distance of 150 m is used 305	
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to avoid falsely segmenting a single cloud into multiple layers.  All bins within the minimum 306	
  

clear distance must fall below the minimum detectable scattering ratio in order to establish a 307	
  

cloud top.  The second constraint requires that the standard deviation of the attenuated scattering 308	
  

ratio (βrʹ′) within the detected layer exceed an empirically-determined threshold, σmin, which 309	
  

varies as a function of cloud top temperature.  Cloud layers generally cause large variances in βrʹ′, 310	
  

either through attenuation effects in otherwise colloidally-stable liquid water clouds or since ice 311	
  

crystals fall within cirrus cloud layers, creating complex structures.  By contrast, aerosols in the 312	
  

free troposphere settle in stratified stable layers absent of convection and are expected to be 313	
  

homogeneous within each layer.  Thus, clouds layers can be distinguished by their relatively 314	
  

large standard deviations of βrʹ′.       315	
  

 In order to determine σmin, a dataset was developed consisting of 144 days at GSFC in 2012 316	
  

and 27061 retrieved UCDM layers at one-minute resolution (18308 thin cirrus cloud layers, 3233 317	
  

non-cirrus layers, 5520 aerosol layers) when the particulate type could be reasonably identified 318	
  

from visual inspection (Fig. 7).  Thin cirrus clouds are distinguished using a cloud top 319	
  

temperature threshold of -37 °C (Sassen and Campbell 2001, Campbell et al. 2015) and a 320	
  

maximum cloud optical depth (COD) of 0.3 (Sassen and Cho 1992).  The COD calculation uses 321	
  

a process described by Chew et al. (2011) and is discussed fully in Section 3.c.1.  Non-cirrus 322	
  

clouds are those with cloud top temperature warmer than -37 °C.   323	
  

 Several choices for σmin were evaluated using error matrices (Congalton and Meade 1986) 324	
  

and the corresponding values of accuracy and Matthews correlation coefficient (Matthews 1975; 325	
  

MCC) which are defined as  326	
  

 (14) Accuracy = TP +TN
TP +FP +FN +TN
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and	
  327	
  
	
  328	
  

, (15) 

where TP is the number of instances when clouds were correctly identified, TN is the number of 329	
  

instances when aerosols were correctly identified, FP is the number of instances when aerosols 330	
  

were misidentified as clouds, and FN is the number of instances when clouds were misidentified 331	
  

as aerosols.  The choice for σmin that resulted in the highest values of accuracy (0.92) and MCC 332	
  

(0.74) is given by 333	
  

σmin =

2, for T > −37 !C

10
T+40

10 , for − 47 !C < T < −37 !C

0.2, for T < − 47 !C

"

#

$
$

%

$
$

. (16) 

The error matrix for the empirically-determined σmin is provided in Table 1.  However, we note 334	
  

that the dataset contains two atypical long-range smoke transport events (with corresponding top 335	
  

height temperatures between -50 °C and -60 °C), which comprised 35% of the aerosol category.  336	
  

If these two events are removed, the accuracy and MCC improve to 0.98 and 0.92, respectively.  337	
  

Similar results were observed at the five- and twenty-minute resolutions, but not shown for 338	
  

brevity.                    339	
  

 The final constraint used to distinguish cloud from aerosol layers is that the estimated COD 340	
  

exceed a threshold, τmin.  Through empirical testing, we estimate COD and set τmin = 0.005 based 341	
  

on analysis of these subsets relative to the perception of how noise impacts these sub-samples 342	
  

combined with a similar analysis by Thorsen et al. (2011).   343	
  

 We briefly note here that lidars with polarization capabilities have recently been 344	
  

incorporated into the MPLNET project.  However, because the overwhelming majority of 345	
  

MCC= TP×TN −FP×FN
(TP +FP)(TP +FN )(TN +FP)(TN +FN )
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existing data (which spans from 2000 – present) was collected without polarization, the 346	
  

algorithm presented here does not rely on such data.  It remains as a future goal to demonstrate 347	
  

how polarization can be used to improve aerosol-cloud discrimination, once a sufficient amount 348	
  

of data is collected from the new polarized sites.    349	
  

c.  Version 3 algorithm output  350	
  

 A listing of the V3 cloud detection algorithm output parameters are provided in Table 2.  351	
  

The output parameters from all temporal averages are gridded to one-minute temporal resolution, 352	
  

as previously described in the combined cloud scene.  The number of cloud layers detected, day 353	
  

flag, and attenuation altitude are given as a single value each minute, characterizing the 354	
  

atmospheric column.  All other cloud products and data flags correspond with individual cloud 355	
  

layers, and are provided each minute with dimensions equal to the number of cloud layers 356	
  

detected.  Meteorological values at the cloud boundaries are obtained from the interpolated 357	
  

GEOS-5 profiles described in Section 2.  358	
  

 1) CLOUD PHASE AND CIRRUS CLOUD OPTICAL DEPTH           359	
  

 In the absence of visual cloud observations, as is the case for autonomous lidar 360	
  

measurements made by MPLNET, Sassen and Campbell (2001) recommend using a minimum 361	
  

cloud top temperature of -37 °C to identify cirrus.  In the V3 cloud algorithm, we use this 362	
  

thermal threshold to distinguish ice clouds (i.e. cirrus) from all other cloud phases.  Because 363	
  

depolarization capabilities are not standard for all MPLNET instruments, no attempt is made to 364	
  

distinguish liquid from mixed phase clouds.           365	
  

 Campbell et al. (2015) evaluate the -37 °C cloud top temperature threshold globally versus 366	
  

the Level 2 CALIOP algorithms that identify ice-phase cloud layers and found that over 99% of 367	
  

clouds satisfying this thermal threshold were classified as ice.  Furthermore, 81% of all ice 368	
  

clouds had cloud top temperatures less than -37 °C.  They conclude, consistent with the findings 369	
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of Sassen and Campbell (2001), that this thermal threshold is stable for specifically 370	
  

distinguishing cirrus cloud presence in lidar studies that lack depolarization, though there is some 371	
  

ambiguity in cases of “warm” cirrus that likely coincide with cloud top temperature greater than 372	
  

-37 °C. 373	
  

 An estimated COD is calculated for clouds distinguished as cirrus using the procedure 374	
  

described by Chew et al. (2011).  Two-way cloud transmission is calculated using Eq. (11).  375	
  

However, now the value of SC is selected based on the cloud top temperature.  Reported values 376	
  

of SC are on the order of 16–18 sr for liquid water clouds (Pinnick et al. 1983, Yorks et al. 2011) 377	
  

and 10–40 sr for cirrus (Sassen and Comstock 2001; Chen et al. 2002; Yorks et al. 2011; Garnier 378	
  

et al. 2015).  A value of SC = 18 sr is chosen for layers with clouds top temperatures warmer than 379	
  

-37 °C and SC = 20 sr at colder temperatures where cirrus clouds are expected.  We note that due 380	
  

to uncertainty in the lidar ratio for cirrus clouds, these estimates may represent the lower limit of 381	
  

COD.    382	
  

 Next, Eq. (12) is used to solve for the cloud backscatter coefficient and the estimated COD 383	
  

is given by  384	
  

τ = SC βC (z)dz
base

top

∫ = SC βm (z)
βr"(z)
TC
2 (z)

−1
$

%
&
&

'

(
)
)dz

base

top

∫ . (17) 

The fidelity of the COD estimate is limited by the choice of SC and accuracy of cloud boundaries 385	
  

retrieved.  The relative error in the lidar-derived optical depth is smallest for low optical depths 386	
  

and proportional to ΔSC/SC as τ approaches zero (Winker et al. 2009).  Lidar signals are unable to 387	
  

penetrate through optically-thick clouds, which causes uncertainty in the value at the apparent 388	
  

cloud top.  In these cases, the estimated COD will be biased low.  Similarly, attenuation from the 389	
  

bottom-most cloud layer leads to uncertainty in corresponding retrievals of higher clouds for 390	
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lidar profiles containing multiple cloud layers.  As a result, the estimated COD will be most 391	
  

reliable for single-layer, optically-thin clouds.    392	
  

 2) RETRIEVAL INDEX 393	
  

 While cloud boundaries are only reported at a single temporal resolution, a retrieval index is 394	
  

included to indicate whether the cloud was also detected at one or more of the other temporal 395	
  

averages.  Cloud layers at different temporal resolutions are considered the same if (i) they share 396	
  

a common base or top height within a vertical depth of 250 m or (ii) one cloud layer is 397	
  

completely enveloped within the other.   398	
  

 An example of a combined cloud scene, with corresponding retrieval indices, is shown in 399	
  

Fig. 8.  The value of the retrieval index is equal to the sum of the temporal resolutions used to 400	
  

identify the cloud layer.  For example, if a cloud is detected at all three temporal resolutions, the 401	
  

value of the retrieval index is 1+5+20 = 26.  The advantage of the multi-temporal averaging 402	
  

scheme can be seen during the day between 1400–1500 UTC in Fig. 8.  The elevated cloud layer 403	
  

(~15 km) is mostly undetected at the one-minute resolution, but can be resolved using the longer 404	
  

averages.  The cloud layer at ~2 km produces “beam-blocked” conditions that prevent use of 405	
  

higher-temporal averages for much of the cirrus cloud layer above it.     406	
  

 3) ATTENUATION ALTITUDE 407	
  

 Because the lidar signal can become completely attenuated within optically-thick clouds, it 408	
  

is important to determine when a true cloud top is being reported as opposed to an apparent 409	
  

cloud top.  Nadir-pointing lidar instruments have an advantage of using the ground return to 410	
  

determine if the lidar signal has been extinguished.  However, with zenith-pointing lidar, that 411	
  

determination is more tenuous.  Winker and Vaughan (1994) defined a transmittance index to 412	
  

determine when the lidar signal was fully attenuated based on the percentage of samples above 413	
  

the cloud top that exceeded the background.  Other techniques used for zenith-pointing lidar 414	
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have included the use of a minimum threshold lidar signal along with its slope (Wang and Sassen 415	
  

2001) and comparisons with molecular profiles (Lo et al. 2006).   416	
  

 In V3, cloud tops (both true and apparent) are reported for all cloud layers along with the 417	
  

altitude at which the lidar signal is determined to be fully attenuated.  This attenuation altitude is 418	
  

found by starting at the range bin of the highest reported cloud altitude and incrementally 419	
  

moving upwards in the profile until, within a depth of 2 km, (i) the percent difference between 420	
  

the mean pseudo-attenuated backscatter and modeled attenuated molecular backscatter falls 421	
  

below some threshold, T1, and (ii) either the backscatter signal falls below a minimum value or 422	
  

the percentage of range bins where the backscatter signal is less than zero exceeds a threshold T2.  423	
  

 This application pertains specifically to profiles that contain clouds or other obstructions, 424	
  

since the attenuation thresholds can also be satisfied by other conditions that lead to low SNR 425	
  

(e.g. high solar background).  “Beam-block” conditions from low-altitude obstructions are found 426	
  

with the same search criteria, though the search is limited to the first 2 km above the surface.    427	
  

4. Results 428	
  

 In order to demonstrate the effects of the changes implemented in the V3 algorithm, we 429	
  

compare V2 and V3 cloud retrievals for one year at the GSFC MPLNET site.  Table 3 and Fig. 9 430	
  

show data sampling statistics for 2012, including the total number of profiles and percentage of 431	
  

time when 1-minute NRB measurements were available monthly.  Observable profiles are given 432	
  

as the number and percentage of available profiles that are not “beam-blocked” below 2 km, 433	
  

MSL.  Profile attenuation was determined using the V2 method because it is the most restrictive 434	
  

and ensures an even comparison between the two cloud detection algorithms.  The diurnal 435	
  

distribution of data recorded and successful V3 normalizations to calculate Cf
* are also shown.  436	
  

There is very little differentiation between the distributions of V2 and V3 normalizations, so only 437	
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the number of successful V3 normalizations are shown for simplicity. Though MPLNET 438	
  

measurements are continuous, there is a decrease in the number of successful normalizations 439	
  

near solar noon in relatively low SNR conditions. 440	
  

 Because V3 uses a merged cloud scene and V2 is only processed at one-minute resolution, 441	
  

V3 retrievals are evaluated using the base one-minute resolution (hereafter V3b) and the merged 442	
  

cloud scene (hereafter V3m).  Comparisons are limited to cloud base statistics because cloud 443	
  

tops are not recorded for all V2 retrievals.  Finally, we describe the macrophysical and optical 444	
  

characteristics of cirrus clouds observed during this study, again adhering to the methodology 445	
  

described in Campbell et al. (2015), using V3 retrievals.       446	
  

a. Vertical dependence  447	
  

 Figure 10 shows the cloud base distributions retrieved from the V2 and V3 algorithms, 448	
  

respectively, at GSFC during 2012.  A bimodal distribution similar to that observed by Winker 449	
  

and Vaughan (1994), with peaks at ~1-2 km and ~9-10 km is apparent.  The total numbers of 450	
  

cloud observations are 269505, 304363, and 332810 for the V2, V3b, and V3m retrievals, 451	
  

respectively.  Compared with V2, the number of cloud observations increases by 12.9% and 452	
  

23.5% for V3b and V3m, respectively.  The largest increase in the number of clouds observed 453	
  

occurs at altitudes above 5 km.   454	
  

 Because the difference in the number of clouds retrieved shows a clear vertical dependence, 455	
  

we examine them specifically for three sub-samples, by defining low clouds as those with base 456	
  

heights less than 2 km, high clouds as those with base heights greater than 5 km, and middle 457	
  

clouds as those with base heights between 2-5 km (WMO 1975).  The number of lidar profiles 458	
  

for each classification, along with occurrence frequency, is shown in Table 4.  Cloud occurrence 459	
  

frequency is defined as the number of lidar profiles containing a particular cloud classification 460	
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divided by the total number of observable profiles.  Regardless of the retrieval method (V2, V3b, 461	
  

and V3m), occurrence frequency is nearly identical for low clouds, which reflects the relative 462	
  

consistency in GCDM application between V2 and V3 at one-minute resolution.  High clouds 463	
  

show the largest increase in occurrence frequency.  For example, comparing the V2 and V3m 464	
  

algorithms, the occurrence frequency of high clouds increases by 5.9% attributable to (i) the 465	
  

increased identification of elevated, multi-layer cloud decks using an attenuated UCDM 466	
  

threshold, (ii) increased use of the UCDM to identify high clouds at day and night, and (iii) 467	
  

multi-temporal application of UCDM to increase SNR.  To (i), V2 retrievals resulted in 91% of 468	
  

cloudy lidar profiles containing single-layer clouds.  The percentage of single-layer clouds 469	
  

decreases to 83% and 80% for V3b and V3m, respectively.   470	
  

b. Seasonal dependence 471	
  

 Figure 11 shows the annual cycle for low, middle, high, and total cloud classifications 472	
  

during 2012.  The low cloud occurrence frequency is nearly identical for all three retrieval 473	
  

methods.  Middle clouds retrieved using V3b and V3m exhibit a slight separation from V2.  The 474	
  

largest differences are again seen with high-cloud retrievals.  While the annual cycles for high 475	
  

clouds show similar patterns for all three retrievals, there is an increase in occurrence frequency 476	
  

of ~3% and 6% for V3b and V3m, respectively.  The increase in high-cloud occurrence 477	
  

frequency when compared to V2 ranges from 1% to 4% using V3b and 4% to 10% for V3m.  478	
  

The largest differences for high-cloud occurrence frequency between V2 and V3 occurs during 479	
  

summer months, which is coincident with the period when the sun is at its highest elevation and 480	
  

thus solar background is highest.  481	
  

c. Diurnal dependence 482	
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 Differences in the diurnal cycle show similar characteristics as the annual cycles for low and 483	
  

middle clouds.  As seen in Fig. 12, V2, V3b, and V3m are nearly identical for low clouds.  While 484	
  

V3b and V3m show slight differences from V2, they are indistinguishable from each other.  485	
  

High-cloud diurnal cycles follow the same trends for all three retrievals.  However, the cloud 486	
  

occurrence frequency is higher for V3b and highest for V3m.  No clear diurnal trend is apparent 487	
  

at GSFC because some changes (e.g. using the UCDM at all times) affect both day and night 488	
  

retrievals.  At tropical sites, where the solar background is higher and longer temporal averaging 489	
  

is necessary, there may be a more obvious diurnal trend.       490	
  

d. Macrophysical and optical cirrus properties 491	
  

 Based on the greater detection of high clouds demonstrated above, we characterize cirrus 492	
  

clouds over the GSFC site as detected by the V3 algorithm.  As stated earlier, cirrus presence is 493	
  

determined using a cloud top temperature threshold of -37 °C.  Additionally, we limit the 494	
  

analysis to cases when (i) only cirrus clouds (no underlying liquid water or mixed phase clouds) 495	
  

were detected in the profile, (ii) the estimated COD was less than 3, based on the upper-limit for 496	
  

cirrus clouds suggested by Sassen and Cho (1992), and (iii) the attenuation altitude was at least 2 497	
  

km above the cloud top.  The final constraint limits the analysis to “transparent cirrus”  cases for 498	
  

which the algorithm is more likely to identify the true cloud top.              499	
  

 The resulting dataset includes 57930 cirrus clouds.  The majority of cloud detections (82%) 500	
  

occur at the base one-minute temporal resolution. The largest occurrence rate of the coarse 501	
  

temporal averages occurs at or near noon and during the summer months when the solar 502	
  

background is highest.             503	
  

 Table 5 summarizes the seasonal and annual mean characteristics of the transparent cirrus 504	
  

dataset.  The monthly variation in the macrophysical properties is shown in Fig. 13.  Cirrus 505	
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clouds over GSFC tend to be higher and thinner (geometrically and optically) in the spring and 506	
  

summer and lower and thicker in the fall and winter seasons.  Cirrus also occur more frequently 507	
  

in the spring and summer months.  The transparent cirrus dataset is composed almost entirely 508	
  

(~95%) of sub-visual (COD < 0.03) and thin (COD <  0.3) cirrus clouds.  Uncertainties in the 509	
  

value of the extinction-to-backscatter ratio and cloud top height could lead to an exaggeration of 510	
  

this finding.  However, it should be noted that when the extinction-to-backscatter ratio is 511	
  

increased from 20 sr to 30 sr (not shown), 86% of cirrus clouds still have a COD less than 0.3.  512	
  

These results are qualitatively consistent with the findings of Dupont et al. (2010), who reported 513	
  

50-75% of non-opaque cirrus clouds had an optical thickness less than 0.3 based on ground-514	
  

based lidar and CALIPSO observations at four mid-latitude sites.   515	
  

 Frequency distributions of the optical and macrophysical properties are presented in Fig. 14.  516	
  

The cloud optical depth peaks in the sub-visual range and has a positive skew.  The transparent 517	
  

cirrus dataset suggests that the limit at which we are able to resolve molecular signal above 518	
  

cloud, and thus reliably determine the cloud top, occurs near a COD of 0.5.  However, if an 519	
  

extinction-to-backscatter ratio of 30 sr is used, this limit occurs near a COD of 0.8.  520	
  

 A comparison of daytime and nighttime cloud retrievals is provided in Table 6.  There are 521	
  

only slight differences in the occurrence frequency between day and night cases.  However, the 522	
  

geometric and optical depths are considerably lower in the daytime.  The thinning of daytime 523	
  

cirrus may be attributable to difficulty in correctly identifying cloud boundaries due to solar 524	
  

background effects (Thorsen et al. 2013).  However, convective cloud remnants are also likelier 525	
  

to occur during daytime hours.  Decoupling the two, aside from seasonal influence, is outside the 526	
  

scope of this analysis.  In the same manner, the daytime retrievals are more likely to be 527	
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considered as totally attenuated due to the higher solar background reducing the possibility to 528	
  

resolve molecular signal at cirrus heights.   529	
  

5. Summary and Discussion     530	
  

 A new Version 3 (V3) cloud detection algorithm has been developed within the NASA 531	
  

Micropulse Lidar Network (MPLNET) that uses a combination of retrieval methods and a multi-532	
  

temporal averaging  scheme.  Most V3 changes represent updates to the Version 2 (V2) 533	
  

uncertainty-based threshold algorithm introduced by Campbell et al. (2008).  The threshold used 534	
  

to identify cloud presence now accounts for attenuation losses within cloud layers, which allows 535	
  

for better estimation of cloud tops and boundaries of overlying cloud layers in profiles where 536	
  

multiple cloud layers are detected.  A more synergistic merging of the gradient-based cloud 537	
  

detection method (GCDM) and uncertainty-based cloud detection method (UCDM) improves 538	
  

nighttime clouds detection of tenuous high clouds.  The incorporation of coarser temporal 539	
  

resolutions at intermediate (5-minute) and long (20-minute) averages improves detection in 540	
  

situations with low SNR (e.g. high solar background).   One year of data at the NASA Goddard 541	
  

Space Flight Center (GSFC) in Greenbelt, MD is used to show the effect of these updates on 542	
  

cloud retrievals. 543	
  

 The largest impact of the changes to the cloud detection algorithm is evident with high 544	
  

clouds (those with cloud base > 5 km), while the diurnal and annual cycles of low and middle 545	
  

clouds exhibit only slight changes from V2 to V3.  The high-cloud occurrence frequency 546	
  

increases by nearly 6% at GSFC when using the V3 merged cloud scene compared with the V2 547	
  

retrieval.  Furthermore, the ability to detect multi-layered cloud scenes is improved with the V3 548	
  

algorithm.  The results show that 91% of clouds in 2012 at the NASA GSFC project site were 549	
  

recorded as single-layer clouds according to the V2 retrieval compared with 80% for V3.   550	
  



	
   26	
  

  A brief investigation of macrophysical properties for transparent cirrus clouds shows that 551	
  

the mean base and top heights at GSFC occur at 10.17 ± 1.63 km and 11.07 ± 1.43 km, 552	
  

respectively.  The highest and thinnest (both geometrically and optically) cirrus are found during 553	
  

the spring and summer months, which was coincident with the highest cirrus occurrence 554	
  

frequency.  There is no significant difference in occurrence frequency between daytime and 555	
  

nighttime retrievals.  However, cirrus clouds are thinner (both geometrically and optically) in 556	
  

daytime than nighttime, which may be attributed to a combination of increased uncertainty due 557	
  

to the solar background effects and higher occurrence of convective cloud remnants during the 558	
  

day.  Notably, the limit to which we are able to resolve molecular signal above cirrus clouds 559	
  

occurs between cloud optical depths of 0.5 and 0.8, allowing for uncertainty in the extinction-to-560	
  

backscatter ratio.       561	
  

 The value of the MPLNET cloud datasets is in its continuous (both day and night) and long-562	
  

term measurements at polar, mid-latitude, and tropical sites using a standard instrument and data 563	
  

processing algorithm.  Incorporating the V3 cloud retrievals from MPLNET as part of a multi-564	
  

instrument investigation will enhance our current knowledge of clouds, in particular cirrus.  As it 565	
  

stands, the cloud products provide a unique validation dataset for the modeling community and 566	
  

satellite measurements.  With some MPLNET sites now well into their second decade of 567	
  

continuous cloud and aerosol observations, the project has become an integral component of 568	
  

ground-based evaluation of atmospheric processes and verification of NASA satellite missions.  569	
  

This paper thus represents our continuing effort to optimize the fidelity of project datasets for the 570	
  

benefit of the community and in sustaining general scientific inquiry.         571	
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TABLE 1. Error matrix for cloud-aerosol discrimination using σmin  732	
  

 Predicted cloud Predicted aerosol 
True cloud 21242 299 
True aerosol 1851 3669 
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Table 2. MPLNET V3 cloud detection algorithm output  734	
  

Parameter Description  

Base and top altitudes Cloud boundaries in km above MSL 

Nlayers Number of cloud layers detected 

Nprofiles Number of 1-min profiles used in average profile 

Method of cloud detection GCDM or UCDM 

Cloud phase Ice or liquid/mixed phase based on -37 °C threshold 

Estimated cirrus COD Calculated using lidar ratios of 20 and 30 sr,  ranging from 

0.005 to 3 

Base and top temperatures From FP-IT GEOS-5 Version 5.9.1 

Base and top pressures From FP-IT GEOS-5 Version 5.9.1 

Base and top wind speeds From FP-IT GEOS-5 Version 5.9.1 

Base and top wind directions From FP-IT GEOS-5 Version 5.9.1 

Day/night flag 0 = Night, 1=Day (from ephemeris) 

Retrieval index Indicates temporal average used to identify the cloud layer  

Attenuation altitude Altitude where lidar beam is deemed to be significantly  

attenuated 
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TABLE 4. Number of lidar profiles and occurrence frequency at GSFC in 2012  736	
  

V2 V3b V3m 

Low clouds 

77943 78511 78513 

0.181 0.183 0.183 

   

 Middle clouds  

69612 75353 75462 

0.162 0.175 0.175 

   

 High clouds  

109366 120750 134514 

0.254 0.281 0.313 

   

 Total clouds  

246132 255079 267777 

0.572 0.593 0.623 

737	
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 TABLE 5. Transparent cirrus cloud properties 738	
  

 Spring 

(MAM) 

Summer 

(JJA) 

Fall 

(SON) 

Winter 

(DJF) 

Annual 

Cloud base      

     Height (km) 10.46 ± 1.44 11.17 ± 1.48 9.77 ± 1.33 9.13 ± 1.49 10.17 ± 1.63 

     Temperature (ºC) -50.3 ± 9.7 -47.9 ± 9.2 -43.9 ± 8.9 -45.7 ± 10.2 -47.4 ± 9.9 

     Pressure (mb) 262.6 ± 57.6  243.9 ± 52.0 291.0 ± 53.7 312.4 ± 66.8 275.9 ± 63.7 

     Wind speed (m s-1) 23.3 ± 12.5 20.3 ± 11.0 26.6 ± 10.7 38.6 ± 14.5 27.1 ± 14.2 

     Wind direction (º) 277.2 ± 40.2 236.8 ± 110.3 259.4 ± 28.3 279.1 ± 20.5 264.6 ± 63.3 

Cloud top      

     Height (km) 11.39 ± 1.35 11.93 ± 1.34 10.74 ± 1.16 10.09 ± 1.33 11.07 ±1.48 

     Temperature (ºC) -57.0 ± 8.1 -53.5 ± 8.0 -51.3 ± 7.3 -52.9 ± 8.4 -54.1 ± 8.3 

     Pressure (mb) 225.9 ± 47.0 215.4 ± 41.6 249.9 ± 41.2 267.6 ± 52.4 238.4 ± 50.5 

     Wind speed (m s-1) 24.5 ± 12.9 21.8 ± 11.8 29.6 ± 11.4 42.5 ± 15.6 29.3 ± 15.4 

     Wind direction (º) 277.2 ± 37.4 238.3 ± 108.0 259.5 ± 29.6 279.3 ± 20.6 265.0 ± 61.7 

Cloud depth (km) 0.93 ± 0.61 0.76 ± 0.51 0.97 ± 0.70 0.96 ± 0.69 0.90 ± 0.63 

Estimated COD 0.07 ± 0.10 0.06 ± 0.10 0.09 ± 0.14 0.09 ± 0.12 0.08 ± 0.11 

Cirrus Type (%)      

     Sub-visual 47 51 45 41 46 

     Thin 50 46 49 53 49 

     Opaque 3 3 6 6 5 

Occurrence (%) 17 12 10 13 13 

Cloud layers 18664 13889 10769 14608 57930 
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TABLE 6. Daytime and nighttime transparent cirrus properties  739	
  

 Daytime Nighttime 

Cloud base   

     Height (km) 10.15 ± 1.69 10.19 ± 1.58 

     Temperature (ºC) -47.3 ± 10.0 -47.5 ± 9.8 

     Pressure (mb) 277.2 ± 65.8 274.9 ± 61.9 

     Wind speed (m s-1) 27.1 ± 14.0 27.0 ± 14.5 

     Wind direction (º) 258.6 ± 70.4 269.6 ± 56.2 

Cloud top   

     Height (km) 10.94 ± 1.51 11.19 ± 1.44 

     Temperature (ºC) -53.2 ± 8.4 -54.8 ± 8.1 

     Pressure (mb) 243.5 ± 51.4 234.0 ± 49.3 

     Wind speed (m s-1) 29.1 ± 15.1 29.5 ± 15.6 

     Wind direction (º) 259.8 ± 68.3 269.4 ± 55.2 

Cloud depth (km) 0.79 ± 0.56 1.00 ± 0.67 

Estimated COD 0.07 ± 0.11 0.09 ± 0.12 

Cirrus Type (%)   

     Sub-visual 51 42 

     Thin 46 52 

     Opaque 3 6 

Occurrence (%) 12 14 

Cloud layers 26360 31570 
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1 Examples of the NRB at GSFC on 7 July 2012 at day (1800 UTC, black) and night 

(0300 UTC, red).   

45 

2 Representation of the GCDM (GSFC; 0233 UTC 7 Nov 2012).  The product of the 

calibration constant and attenuated scattering ratio is shown in the left panel and its 

derivative is shown on the right.  The vertical dashed lines represent the amin and 

amax thresholds. 

46 

3 Representation of the UCDM (GSFC; 0300 UTC 7 July 2012).  The bottom (r1) and 

top (rN) of the normalization region are indicated by the horizontal dashed lines.  

The red curve represents the product of Cf
*  and the minimum detectable scattering 

ratio used to determine the cloud boundaries.   

47 

4 (Top) Version 2 cloud retrievals at GSFC site on 23 March 2012 (one-minute 

resolution).  Cloud bases and tops are indicated by red and orange markers, 

respectively.  The noise altitude (i.e. δNRB/NRB > 0.5) is represented by the solid 

white line (four-minute smoothing applied for clarity). (Bottom)  Same as top figure 

but using the V3 algorithm at one-minute resolution.  The bottom of the 

normalization region is represented by the solid white line (four-minute smoothing 

applied for clarity).    

48 

5 Schematic of the V3 cloud detection algorithm at the one-minute base resolution. 49 

6 Schematic of the V3 cloud detection algorithm for higher temporal averages. 50 

7 (Left) Representative groupings of cirrus clouds, non-cirrus clouds, and aerosols 

from GSFC (3-5 Aug 2012).  (Right) Scatterplot of full dataset used to determine 

σmin threshold.  The Xs represent the median values of each group, the thin 

51 
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boundaries encloses 50% of the data nearest the median and thick boundaries 

enclose 90% of the data.  The dashed line indicates the empirically-determined σmin.     

8 (Top) Example of a combined cloud seen at the GSFC MPLNET site on 7 July 

2012.  (Bottom) Retrieval flags showing the temporal resolutions used to detect the 

combined cloud scene.  Square symbols are used to indicate the cloud base and the 

Xs are used for the cloud top.   

52 

9 (Top) Number of minutes when data was recorded by month. (Bottom) The number 

of minutes data was recorded each hour.  The red colors represent the successful Cf
* 

normalizations and yellow are the total data. 

53 

10 Cloud base height distributions for GSFC during 2012 for V2 (solid line), V3b 

(dashed line) and V3m (dash-dotted line).  Vertical axis bin size equals 1 km.    

54 

11 Annual cycle of the occurrence frequency for low, middle, high and total clouds at 

GSFC during 2012. The solid line represents V2, the dashed line V3b, and the dash-

dotted line V3m. 

55 

12 Diurnal cycle of the occurrence frequency for low, middle, high and total clouds at 

GSFC during 2012. The solid line represents V2, the dashed line V3b, and 

the dash-dotted line V3m. 

56 

13 Monthly averaged cloud top (thick solid line), cloud base (thin solid line), cloud 

depth (dashed red line) and cloud optical depth (dashed-dotted blue line) for the 

transparent cirrus dataset.    

57 

14 (a) Cloud base altitude, (b) cloud top altitude and (c) cloud depth for the transparent 

cirrus dataset.  The colors indicate the cirrus type based on the estimated COD (blue 

for sub-visual, yellow for thin, and red for opaque cirrus).  Horizontal axis bin size 
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is 0.5 km for base and top altitudes and 0.25 km for cloud depth.  (d) Frequency 

distribution (black) and cumulative frequency distribution (red).  The vertical dashed 

lines indicate the thresholds for sub-visual (0.03) and thin (0.3) cirrus clouds.  

Horizontal axis bin size equals 0.001.   

	
   	
  741	
  



	
   45	
  

	
  742	
  
FIG. 1. Examples of the NRB at GSFC on 7 July 2012 at day (1800 UTC, black) and night (0300 743	
  
UTC, red).    744	
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 745	
  
FIG. 2. Representation of the GCDM (GSFC; 0233 UTC 7 Nov 2012).  The product of the 746	
  
calibration constant and attenuated scattering ratio is shown in the left panel and its derivative is 747	
  
shown on the right.  The vertical dashed lines represent the amin and amax thresholds.   748	
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 749	
  
FIG. 3. Representation of the UCDM (GSFC; 0300 UTC 7 July 2012).  The bottom (r1) and top 750	
  
(rN) of the normalization region are indicated by the horizontal dashed lines.  The red curve 751	
  
represents the product of Cf

*  and the minimum detectable scattering ratio used to determine the 752	
  
cloud boundaries.    753	
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 754	
  
FIG. 4. (Top) Version 2 cloud retrievals at GSFC site on 23 March 2012 (one-minute resolution).  755	
  
Cloud bases and tops are indicated by red and orange markers, respectively.  The noise altitude 756	
  
(i.e. δNRB/NRB > 0.5) is represented by the solid white line (four-minute smoothing applied for 757	
  
clarity). (Bottom)  Same as top figure but using the V3 algorithm at one-minute resolution.  The 758	
  
bottom of the normalization region is represented by the solid white line (four-minute smoothing 759	
  
applied for clarity).     760	
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  761	
  
FIG. 5. Schematic of the V3 cloud detection algorithm at the one-minute base resolution.  762	
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 763	
  
FIG. 6. Schematic of the V3 cloud detection algorithm for higher temporal averages.   764	
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 765	
  
FIG. 7. (Left) Representative groupings of cirrus clouds, non-cirrus clouds, and aerosols from 766	
  
GSFC (3-5 Aug 2012).  (Right) Scatterplot of full dataset used to determine σmin threshold.  The 767	
  
Xs represent the median values of each group, the thin boundaries encloses 50% of the data 768	
  
nearest the median and thick boundaries enclose 90% of the data.  The dashed line indicates the 769	
  
empirically-determined σmin.      770	
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 771	
  
FIG. 8. (Top) NRB from lidar measurements at the GSFC MPLNET site on 7 July 2012. 772	
  
(Bottom) Retrieval indices showing the temporal resolutions used to detect the combined cloud 773	
  
scene.  Square symbols are used to indicate the cloud base and the Xs are used for the cloud top.    774	
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 775	
  
FIG. 9. (Top) Number of minutes when data was recorded by month. (Bottom) The number of 776	
  
minutes data was recorded each hour.  The red colors are the successful Cf

* normalizations and 777	
  
yellow are the total data. 778	
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    779	
  
FIG. 10. Cloud base height distributions for GSFC during 2012 for V2 (solid line), V3b (dashed 780	
  
line) and V3m (dash-dotted line).  Vertical axis bin size equals 1 km.     781	
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 782	
  
FIG. 11. Annual cycle of the occurrence frequency for low, middle, high and total clouds at 783	
  
GSFC during 2012. The solid line represents V2, the dashed line V3b, and the dash-dotted line 784	
  
V3m. 785	
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 786	
  
FIG. 12. Diurnal cycle of the occurrence frequency for low, middle, high and total clouds at 787	
  
GSFC during 2012. The solid line represents V2, the dashed line V3b, and the dash-dotted line 788	
  
V3m.  789	
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 790	
  
FIG. 13. Monthly averaged cloud top (thick solid line), cloud base (thin solid line), cloud depth 791	
  
(dashed red line) and cloud optical depth (dashed-dotted blue line) for the transparent cirrus 792	
  
dataset.    793	
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 795	
  
FIG. 14. (a) Cloud base altitude, (b) cloud top altitude and (c) cloud depth for the transparent 796	
  
cirrus dataset.  The colors indicate the cirrus type based on the estimated COD (blue for sub-797	
  
visual, yellow for thin, and red for opaque cirrus).  Horizontal axis bin size is 0.5 km for base 798	
  
and top altitudes and 0.25 km for cloud depth.  (d) Frequency distribution (black) and cumulative 799	
  
frequency distribution (red).  The vertical dashed lines indicate the thresholds for sub-visual 800	
  
(0.03) and thin (0.3) cirrus clouds.  Horizontal axis bin size equals 0.001.   801	
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